
Object-Oriented Design

 2 - 1

DESIGN METHODOLOGIES

AND

GRAPHICAL NOTATION

●● Diagramming Notations ●● State Transition Diagrams

●● Data Flow Analysis Methods ●● Object Diagram Conventions

●● Data Flow Diagrams ●● Entity Relationship Diagrams

●● Data Dictionary and Its ●● Object Interaction Diagrams

Content ●● Booch Diagrams

●● Functional Analysis Methods ●● Design Methodologies

●● Function Diagrams

Object-Oriented Design

 2 - 2

DIAGRAMMING NOTATIONS

Many diagramming notations are used during both requirements

analysis and design:

●● Data Flow Diagrams

●● Function Diagrams

●● State Transition Diagrams

●● Entity Relationship Diagrams

Other diagramming notations are intended specifically for design and

are often language-specific. These notations are often used when

the implementation language is Ada:

●● Object Interaction Diagrams

●● Booch Diagrams

The applicaiton of these and other diagramming notations is a part of an

organization's software development process.

Object-Oriented Design

 2 - 3

DATA FLOW ANALYSIS METHODS

✓✓ Data Flow Diagrams tell us:

●● Data Sources and Sinks in the System

●● Flow of Data in the System

●● Functions which Transform the Data in the System

●● Functions which cause Data Transactions in the System

✓✓ Data Dictionary tells us:

●● Attributes of the Data in the System

●● Other Information about the Data in the System

Object-Oriented Design

 2 - 4

DATA FLOW DIAGRAMS

Data Store Data Store

Data Store

Function Function

Data Flow

Data Flow

Data Flow

Data FlowThese are the symbols

commonly used in

Data Flow Diagrams (DFD's).

Object-Oriented Design

 2 - 5

DATA FLOW DIAGRAMS

EXAMPLE

Console File

Read Line Format Line

Line

Line

Formatted Line

Object-Oriented Design

 2 - 6

DATA DICTIONARY AND ITS CONTENT

●● Each class of objects in the system and its

attributes

●● Each singular object (i.e., if placed into a

class, the class would have only one instance)

and its attributes

●● Key constants and their attributes

●● Subprogram parameters and their attributes

Object-Oriented Design

 2 - 7

FUNCTIONAL ANALYSIS METHODS

✓✓ Function Diagrams tell us:

●● Functions in the System

●● Sequence of Function Performance

✓✓ State Transition Diagrams (STD's) tell us:

●● States of the System

●● Relationships between States in the System

●● Events that Cause State Transitions in the System

●● Resulting Actions Performed in Response to these Events

Object-Oriented Design

 2 - 8

FUNCTION DIAGRAMS
IF-THEN-ELSE

WHILE-DO
REPEAT-UNTIL

CASEThese are the

symbol combinations

commonly used in
Function Diagrams.

Object-Oriented Design

 2 - 9

FUNCTION DIAGRAMS

EXAMPLE

Open
File

Get
Line

Done? Close
File

Put
Line

No

Yes

Object-Oriented Design

 2 - 10

STATE TRANSITION DIAGRAMS

State 1

State 2

Event/
Resulting Action

These are the symbols

commonly used in

State Transition Diagrams (STD's).

Object-Oriented Design

 2 - 11

STATE TRANSITION DIAGRAMS

EXAMPLE

Initialize System and
Open File

Read Line from File

Format Line

Write Line to ConsoleClose File (if open)
and Exit

Done

Open Failed/
File Not

Found Message
Is Displayed

End of File
New Line Read

Done

Write
Successful

Write Failed/
Error Message

Displayed

Object-Oriented Design

 2 - 12

OBJECT DIAGRAM CONVENTIONS
✓✓ Entity Relationship Diagrams (ERD's) tell us:

●● Entities in the System

●● Relationships between these Entities

✓✓ Object Interaction Diagrams tell us:

●● Objects and Classes in the System

●● Relationships between Objects

●● Object Interfaces

●● Data Flow between Objects

●● Method Invocation

●● Sequencing of Invocations (optional)

✓✓ Booch Diagrams tell us:

●● Dependency Relationships between Classes

Object-Oriented Design

 2 - 13

ENTITY RELATIONSHIP DIAGRAMS

Entity 1

Entity 2

Relationship

These are the symbols

commonly used in an

Entity Relationship

Diagram (ERD).

Object-Oriented Design

 2 - 14

ENTITY RELATIONSHIP DIAGRAMS

EXAMPLE

Program

Console File

Reads Lines From

Creates

Writes Lines To

Object-Oriented Design

 2 - 15

OBJECT INTERACTION DIAGRAMS

Package

Subprogram

Task

Data Type

Subprogram

Subprogram

Entry Point

Entry Point

Invocation of
one Subprogram

by another with
data flow

These are the symbols

commonly used in

Object Interaction
Diagrams (OID's).

Data Type

Object-Oriented Design

 2 - 16

OBJECT INTERACTION DIAGRAMS

EXAMPLE

File

FILE_TYPE

Open

Put_Line

Close

Console

Get_Line

Program

ID

ID

ID

Name

Line

Line

Object-Oriented Design

 2 - 17

BOOCH DIAGRAMS

EXAMPLE (Only)

File

FILE_TYPE

Open

Put_Line

Close

Console

Get_Line

Program

Booch Diagrams use the same
basic symbols as OID's, except
that they show dependency
information instead of data flow,
relationships, and (optionally)

function sequencing.

Object-Oriented Design

 2 - 18

DESIGN METHODOLOGIES

✓✓ Data Flow-Oriented Design

✓✓ Data Structure-Oriented Design

✓✓ Object-Oriented Design

✓✓ Real-Time Design

Note

The first three classes are heavily driven by

the Information Domain.

Object-Oriented Design

 2 - 19

DESIGN METHODOLOGIES

Data Flow-Oriented Design

●● Uses information flow characteristics to derive the program

structure

●● There are two design analysis techniques:

❍❍ Transform Analysis and Design - the information flow exhibits

distinct boundaries between incoming and outgoing data (i.e.,

input, processing, and output are the three key elements of the

data flow)

❍❍ Transaction Analysis and Design - an information item causes

the flow to branch along a choice of paths

●● Data Flow Diagrams (DFD's) are the common graphical means to

represent the flow of data

Object-Oriented Design

 2 - 20

DESIGN METHODOLOGIES

Data Flow-Oriented Design
Transform Analysis and Design

Design Steps:

●● Review the fundamental system model

●● Review and refine the DFD's for the software

●● Determine the transform and transaction characteristics of the DFD's

●● Isolate the transform center by specifying incoming and outgoing flows

●● Perform "first-level factoring" - derive the mapping from the major parts

of the DFD to a program structure

●● Perform "second-level factoring" - map individual bubbles in the DFD

into modules in the program structure

●● Refine the above "first-cut" program structure - maximize cohesion,

minimize coupling, and build a structure hierarchy

Object-Oriented Design

 2 - 21

DESIGN METHODOLOGIES

Data Flow-Oriented Design
Transaction Analysis and Design

Design Steps:

●● Review the fundamental system model

●● Review and refine the DFD's for the software

●● Determine the transform and transaction characteristics of the DFD's

●● Isolate the transaction center and the flow characteristics of each

action path

●● Map the DFD into a software structure amenable to transaction

processing

●● Factor and refine the transaction structure and the structure of each

action path

●● Refine the above "first-cut" program structure - maximize cohesion,

minimize coupling, and build a structure hierarchy

Object-Oriented Design

 2 - 22

DESIGN METHODOLOGIES

Data Flow-Oriented Design
Design Heuristics

●● Minimize coupling and maximize cohesion

●● Minimize fan-out and strive for fan-in as the depth increases

●● Minimize side-effects; keep the scope of the effect of a module

within the scope of control of that module

●● Evaluate module interfaces to reduce complexity and redundancy;

improve consistency of the module

●● Define modules whose function is predictable and testable

●● Strive for single-entry, single-exit modules

●● Package softwawre based on design constraints and portability

requirements

Object-Oriented Design

 2 - 23

DESIGN METHODOLOGIES

Data Structure-Oriented Design
●● Three key methods:

❍❍ Jackson System Development - concentrates on process

modeling and control

❍❍ Logical Construction of Programs (Warnier) - rigorous view of

data structure and focus on detailed procedural design

❍❍ Data Structured System Development (Orr) - incorporates data

flow analysis with the Logical Construction of Programs and

Jackson System Development (JSD to a lesser extent)

●● This is 1970's technology and is not covered in detail

Object-Oriented Design

 2 - 24

DESIGN METHODOLOGIES

Object-Oriented Design (OOD)

●● Concerns itself with creating a model of the real world

●● Objects represent the information domain, and the operations

associated with that information are grouped with the objects

●● Messages (interfaces) provide a means by which operations are

invoked

●● Packaging of objects with their associated operations takes place -

data and procedural abstractions are combined in a single program

component called an object or a package

●● OOD representations are more prone than others to programming

language dependency

Object-Oriented Design

 2 - 25

DESIGN METHODOLOGIES

Object-Oriented Design

Definitions

●● Object - a component of the real world that is mapped into the

software domain or an information item

●● Operations or Methods - processes which act on objects to

transform their internal data structure or provide information on their

internal data structures

●● Message - a request to an object to perform one of its operations

●● Class - a set of objects which share common characteristics

●● Instance - an individual object of a class

Object-Oriented Design

 2 - 26

DESIGN METHODOLOGIES

Object-Oriented Design Steps

●● Identify the objects

●● Identfy the attributes of the objects

●● Identify the operations that may be applied to the objects

●● Establish the interfaces of the objects to the outside world (Ada

package specifications may be used if Ada is the implementation

language)

●● Implement the objects (Ada package bodies may be used if Ada is

the implementation language)

●● Graphical representation may be employed; Booch Diagrams and

Object Interaction Diagrams are the recommended diagramming

notations

Object-Oriented Design

 2 - 27

DESIGN METHODOLOGIES

Real-Time Design

●● Encompasses all aspects of conventional software design while

simultaneously introducing timing and sizing constraints; these

constraints must be satisfied by the code

●● All classes of design (architectural, procedural, and data) become

more complex due to the response time required by the real-world

constraints

●● Mathematical modeling and simulation are common tools used for

real-time design

Object-Oriented Design

 2 - 28

DESIGN METHODOLOGIES

Real-Time System Concerns

●● Interrupt handling and context switching

●● Response time

●● Data transfer rate

●● CPU and system throughput

●● Resource allocation and priority handling

●● Task synchronization and intertask communication

